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Abstract

We analyze the phenomenon of steady heat transfer enhancement due to chaotic particle paths in steady, laminar
flow through a tube. The performances of two different coils, one with regular mixing and the other with chaotic mixing,
are numerically analyzed and compared. For the latter case, axially periodic boundary conditions over a unit cell are
used. Velocity vectors and temperature fields are computed. Poincaré maps of fluid particles being repeatedly mapped
from inlet to outlet of this cell are presented as function of system geometry. Point and periodic attractors with chaotic
windows are found. Lyapunov exponents are used to establish the presence of chaotic mixing. Flow fields and isotherms
are examined to reveal the mechanisms of enhanced heat and momentum transfer through modification of the wall and
internal boundary layers. Spatially varying local and constant bulk Nusselt numbers and bulk friction factors are
determined for a range of governing parameters. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Heat transfer enhancement in internal flows without
undue increase in pressure loss has been a goal in in-
dustry for a long time. Over the years, various means of
increasing the rate of heat transfer have been proposed.
Many of these active and passive methods enhance heat
transfer by expelling temperature gradients through
advective mixing. Of late, there has been a heightened
interest in mixing studies [1,2]. A number of recent ar-
ticles on fluid mixing have employed visual tools in the
form of photographs and Poincaré sections for numer-
ically computed flow fields [1,3]. The focus of this work
is not on mixing itself but rather on the relationship
between mixing and enhanced heat transfer. The term
mixing used in this work is used to denote deformation
or dispersion of material elements in a fluid. This view is
consistent with the description suggesting that mixing
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can be viewed entirely in kinematic terms as the efficient
stretching and folding of material lines and surfaces. In a
flow field endowed with velocity and temperature
gradients, mixing of material elements can lead to both
momentum and thermal mixing. Thus, heat transfer
enhancement may also be accompanied by undesirable
pressure drop increases due to momentum transfer en-
hancement. However, it is shown in some recent studies
that chaotic particle paths can be induced in laminar
creeping flow. This suggests that, with a proper design of
the mixing mechanism, heat transfer enhancement can
be achieved with little increased pressure drop expendi-
ture.

That mixing within recirculating zones in the flow
can lead to significant increases in heat or mass transfer
has been observed in many applications. In curved heat
exchanger tubes, similar transverse recirculation is nat-
urally present due to the centrifugal effects of tube cur-
vature resulting in increased mixing and heat transfer
compared to that obtainable in straight tubes. Numer-
ous theoretical and experimental works have been di-
rected at better understanding this phenomenon. These
studies have focused on the potential of the secondary
flows to increase heat transfer in coiled tubes as
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Nomenclature

a tube radius

f friction factor

G pressure gradient parameter = pfa’/

M vector representing mean pressure gradient
along coordinates

Nu(¢,z) local Nusselt number

Nu(z) peripherally averaged Nusselt number

Nu peripherally and axially averaged Nusselt

number
P pressure
p periodic pressure deviation
Pe Peclet number
Pr fluid Prandtl number
q velocity vector
R coil radius
r radial coordinate
Re Reynolds number = 2pWa/u
T fluid temperature
Touik fluid bulk temperature
Ty wall temperature

w axial velocity component

W average axial velocity

z axial length

Z length after which coil switches axis

Greek symbols

p negative of mean axial pressure gradient

y axial coordinate

Vs axial wavelength

0 radius ratio a/R

¢ angular coordinate in plane normal to tube

axis

0 switching angle

I dynamic viscosity

o fluid density

g source term in the energy equation
Other symbols

* dimensional quantity

AA alternating axis coil

CA constant axis coil

ST straight tube

compared to that in straight tubes. While recognizing
the important role of secondary flows in enhancing
radial transport, it is possible that a further enhance-
ment may be obtained by suitably forcing the flow so as
to render the particle trajectories chaotic. That trajec-
tories that are chaotic can lead to better mixing has been
observed experimentally and numerically [2-13].

In an earlier paper [4], we demonstrated that a time-
periodic flow field whose particle paths are chaotic can
also enhance heat dispersion and transport. This led to
the construction of a coiled tube heat exchanger with an
alternating coil axis where temporal forcing is replaced
by a spatial one [14]. In steady flow within a tube, the
axial coordinate is taken to be the analog of time and we
have shown that by periodic changes in axis of a coiled
tube, it is possible to produce chaotic pathlines in the
flow. The periodic change is effected by perturbing the
boundary to periodically alter the coil axis direction by a
fixed angle resulting in the alternating-axis coil as in Fig.
1 (hereafter referred to as AA coil) as compared to a
regular constant-axis helical coil (hereafter referred to as
CA coil).

In earlier studies, the streamline or axial coordinate
of a three-dimensional steady flow field is taken to be a
time-like variable — the so-called Lagrangian particle
perspective. This advection description is valid only if
diffusion is negligible, or the Peclet number, Pe, is infi-
nite. Whether the Lagrangian description remains valid
at finite Pe will be scrutinized here. However, a more
important distinction between a steady heat transfer
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Fig. 1. Basic unit cell for alternating axis coil and coordinates.
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problem and a time-periodic one is the existence of en-
trance thermal boundary layers. The enhanced temporal
dispersion induced by time-periodic chaotic mixing of-
ten does not involve steady boundary layers. At most,
transient boundary layers both within the flow and on
the boundary appear periodically as convection balances
chaotic dispersion. In contrast, steady heat transfer
problems, like the heat exchanger coil, necessarily in-
volve steady boundary layers. At large Pe, spatially
periodic chaotic mixing can only serve to change the
thickness of these boundary layers. Quantitatively, one
hence expects a spatially-varying Nusselt number of a
steady flow and a bulk Nusselt number for a time
periodic flow. Spatial chaotic mixing is hence funda-
mentally different from temporal chaotic mixing.

The present work is aimed at clarifying some of the
above-mentioned issues in mixing and its effect on heat
transfer with a detailed numerical analysis of coiled tube
heat exchangers for arbitrary curvature ratios. The study
is carried out by comparing the thermal and hydraulic
performance of the CA coil to that of the AA coil over
different parameter ranges. We shall consider the case
when the coil is periodically twisted in the downstream
direction with a predefined switching angle, 0, i.e. the
coil axis is rotated by 0. The twisting is performed about
the axial coordinate with the first twist being 6 and the
second being —0 over a total axial length equal to half a
coil loop. The switching action occurs after a distance
2nRn coil lengths, where R is the radius of coiling. Thus
2n is the length of the unit cell. The axial length, z, and
the axial switching length, z; are defined relative to the
mean coil radius as z = Ry and z; = Ry,. The coordinate
{ is the non-dimensional distance along the cell, i.e.,
{ =2z/z,. Except where the switching length is being
varied. n has been taken to be 1/4.

2. Governing equations

We use a toroidal coordinate system (r*, ¢, y) where
r* and ¢ are the polar coordinates at a given axial
position y as shown in Fig. 1. The pitch of the coil is thus
neglected. It is further assumed in the analysis that the
flow is laminar, steady, with constant fluid properties,
and with negligible viscous dissipation, gravity and
buoyancy effects. In the following analysis, we extend
the two-dimensional study of periodic heat transfer
presented in Patankar et al. [15] to three-dimensional
geometries, and apply it to the particular case of peri-
odic flow and heat transfer in coiled tube heat ex-
changers.

For a straight tube and CA coil, the velocity and
temperature fields exhibit a developing region with
pronounced boundary layer structures near the inlet
section and approach a fully developed value with dis-
tance downstream where the relevant axial gradients of

the variables tend to zero. The thermally developed
condition, on the other hand, is reached when the local
Nusselt number approaches a constant value.

In contrast, the AA coil is axially periodic and fea-
tures axially periodic velocity and thermal profiles. In
this case, integrated measures over the unit cell approach
a constant value in the fully developed limit. Periodic
boundary conditions are assumed for the flows within
this coil, so that the mathematical formulation becomes
elliptic in all the three spatial coordinates. The fully
developed state is defined by the periodicity conditions

q*(r*7 Qb,'y) = q*(r*v d)a Y+ 'yx) = q*(V*7 (:bvy + 2??) ="
(1)
where q is the velocity vector, 7y is the axial coordinate
and 7y, is the axial angular wavelength. Following the
analysis of Patankar et al. [15] and Lahbabi and Chang
[16], the pressure is decomposed into that due to a

constant overall axial pressure gradient § and a devia-
tion from this p*(+*, ¢,7), so that

p*(ra¢7y):7ﬁy+ﬁ*(rv¢7’y) (2)
The deviation is periodic so that

P y) =p(r by +0) =p (" gy + 2p) =
(3)

For periodic geometries such as the AA coil, the local

temperature field and Nusselt number will oscillate

periodically even in the fully developed region. Appro-
priately scaled, the temperature field can be represented as

T(V*7¢-,V):T(”*v(lsv"/“'“/s):T(”*7¢77+2Vs):"'7

4)

where the temperature has been non-dimensionalized as
T =T

T= ~ (5)

Lo () = Ty

The governing equations are non-dimensionalized using
the radius of the tube, a, as characteristic length, fa?/u
as a characteristic velocity, and aff as a reference
pressure difference. The continuity equation is then

V.-q=0. (6)

The momentum equation for a Newtonian fluid is

1
G(Ev(qq)—quxq):—Vﬁ+M+V2q, (7
where

1 T
M= (0707 1+ 4rd(sin ¢ + sin(¢ + 0))> 7

(®)

r=71"/a is the non-dimensional radial coordinate,
6 =a/R is the radius ratio, G = pfa’/y? is a pressure
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gradient parameter and is related to the flow Reynolds
number Re = 2pW*a/u by

Re =2GW. 9)

The first term on the right-hand side of Eq. (7) corre-
sponds to the deviation pressure while M is a momen-
tum source term due to the overall axial pressure
gradient.
The energy equation can be written as
1

V- (qT) :@V2T+a. (10)

The source term

1 2 . T _,. .
where
f:TJulk_T\:;’ (12)

o appears in Eq. (10) due to the form of the non-di-
mensionalization since T, depends on the axial coor-
dinate y. For each problem there is a specific value of o
satisfying the equation and boundary conditions.

The appropriate hydrodynamic and thermal bound-
ary conditions at the wall are that at » =1, =0 and
T = 0. In addition we have the periodicity conditions
defined by Egs. (1), (3) and (4).

The local Nusselt number at a point on the wall is
given by

oT
Nu(p,y) =2—. 13
u(g,) =22 (13)
This can be integrated over ¢ to give the peripherally
averaged Nusselt number Nu(y) at a given z section. For
the AA coil this can be further integrated over a unit cell
to give Nu.

3. Numerical scheme

The Egs. (6), (7) and (10) are reduced to a set of al-
gebraic equations using the control volume method. The
domain is discretized in the toroidal coordinate system
based on uniform increments in the radial, angular and
axial coordinates. A staggered grid is employed such
that the elemental control volumes for the radial, an-
gular and axial velocities are staggered in the positive
direction along each coordinate by half a control volume
each. The nodes at which the variables are computed are
placed centrally within each elemental control volume.
Further details can be found in [17].

Discretized versions of the governing equations are
obtained by applying conservation of mass, momentum
and energy to each elemental control volume. Mass
fluxes at the faces of the elemental control volume are

obtained by linear interpolation between the nodal val-
ues. Momentum fluxes at the boundaries are obtained
by a hybrid scheme. The pressure correction equation is
obtained from the continuity equation by using the
pressure-velocity coupling as in the SIMPLE algorithm
with the approximation suggested by Van Doormaal
and Raithby [18]. The pressure field is continually up-
dated in the calculation procedure by defining an arbi-
trary pressure level, equal to the pressure at one of the
interior grid points.

For each set of parameters G, é and 0, the flow field is
determined. Integration of the axial velocity w(r, ¢,7)
over any cross-section then gives the average flow
velocity W which is independent of z. From this Re can
be determined using equation (9). The numerical results
are validated against known theoretical and experi-
mental results available in the literature. The flow field is
validated against Dean’s solution [19] in the low Dean
number limit and the friction factor as well as the
Nusselt numbers were compared over a range of Rey-
nolds numbers. A typical mesh used for the computa-
tions was (40 x 48 x 40) in the (7, ¢,7) coordinates.

4. Chaotic particle paths and the enhancement mechanism

In straight tube flows, repeating developing flow
patterns can be generated by means of physical ob-
structions located periodically in the path of the flow.
This serves to destroy the limiting parallel flow reached
in the developed state and contributes a radial flow
component which leads to increased momentum and
thermal mixing. In coiled tubes, since the fully developed
flow regime already features a transverse flow, repeated
developing flow patterns are easily generated by the es-
sentially passive arrangement of modifying the direction
of the centrifugal force by rotating the coil axis with no
additional flow obstructions.

For the CA coil, in the fully developed flow condition
the gradient Ow/0z is identically zero. The cross-sec-
tional flow field satisfies the continuity equation at all
points and is thus Hamiltonian. For the AA coil how-
ever, since Ow/0z # 0 even in the fully developed limit,
the transverse flow can be locally dissipative, i.e. non-
area preserving, at every point on a cross-section even
though it is globally conservative over the entire cross-
section, the integral of V7 - q; = —0w/0z being zero over
any cross-sectional area. In the stroboscopic maps of the
cross-sectional flow field of the AA coil, fixed points
may sometimes represent axially periodic particle tra-
jectories rather than attractors.

Figs. 2(a)—(d) show the Poincaré maps for a range of
switching angles from 0° to 90° obtained for a fluid el-
ement traversing 4500 unit cells in the axial coordinate.
Since the G has been kept constant at 400, the values of
Re vary in the range of 81-83, approximately. There are
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(a) 6 =30°

(b) 0=45°

(c) 0 =715°

(d) 6 =90°

Fig. 2. Poincaré sections for flow field of AA coil for different switching angles, G = 400,06 = 0.2,z; = 7/20.

two elliptic fixed points for the case of 0 =0, which
represents a CA coil. As shown in Table 1, except for
switching angles in the region of 6 = 45° and 0 > 72°,
single or multiple periodic points are observed in the
map. For 0 = 15°, the fixed points are truly periodic.
This means that the particle trajectories passing through
the fixed points displayed are periodic with axial
periodicity of n unit cells when there are n fixed points in
the map. The parameters for this table are the same as
those in Fig. 2. For 0 = 45° and for 0 > 72°, an infinite
number of fixed points are observed in the Poincaré
map. All fixed points are unstable in this limit and the
radial position of a neutrally buoyant particle undergoes
chaotic variation downstream under the Poincaré map
for all values of 6 and Re [14]. It is only at these
switching angles that the particle path is truly chaotic
and a positive Lyapunov exponent can be calculated.
Chaotic mixing is lost at other switching angles because
of the coupling between the transverse flow and the axial

flow at sufficiently large 6 which renders the transverse
flow dissipative. There is hence a qualitative difference in
the transition sequence to chaos in a flow with a con-
servative transverse flow, like the Dean’s flow at small J,
where the mechanism is a Melnikov bifurcation and the
dissipative transverse flow here where chaotic regions
are interspersed with regions of periodicity. The
Lyapunov exponent calculated using the method of
phase space reconstruction [20], yields a value of 1.14 for
G =400, = 0.2 and 0 = 90°. In constrast, the value for
the CA coil asymptotes to zero within three significant
digits. Thus, the trajectories of the AA coil at 6§ = 90°
are chaotic while those of the CA coil are not. We have
previously shown [14] that the Lyapunov exponent for
the AA coil, calculated using the simplified flow field
given by Dean’s equations and an assumption of zero
development length, shows a value of 1.5 for the same
switching angle. Hence the dissipation mechanism that
arises at finite ¢ serves to reduce the degree of mixing,



3194 N. Acharya et al. | International Journal of Heat and Mass Transfer 44 (2001) 3189-3199

Table 1

Location and unit-cell periodicity of attracting fixed points
(r,¢) for different switching angles 0 (G = 400,06 =0.2,z, =
7/20)

0(°) r o(°) Periodicity
0 No attracting fixed points
15 0.64 6 Period 1
0.35 157 Period 1
25 0.69 353 Period 1
28 0.69 354 Period 1
30 0.76 310 Period 4
0.80 21 Period 4
0.46 12 Period 4
0.43 323 Period 4
31 0.23 148 Period 1
35 0.24 135 Period 1
40 0.26 133 Period 1
43 0.20 135 Period 1
45 No attracting fixed points
46 0.25 139 Period 1
50 0.21 137 Period 1
60 0.76 333 Period 1
65 0.85 325 Period 2
0.62 327 Period 2
70 0.47 320 Period 2
0.89 314 Period 2
70.5 0.48 320 Period 2
0.89 313 Period 2
71 0.51 272 Period 3
0.64 113 Period 3
0.52 6 Period 3
71.5 0.47 267 Period 3
0.59 114 Period 3
0.50 10 Period 3
=72 No attracting fixed points

assuming that the Lyapunov exponent is a measure of
mixing. Of course, while the Dean’s flow is chaotic for
all switching angles, the real flow is chaotic only for
some switching angles. Since our interest here is moti-
vated by the application of this mechanism for a heat
transfer process, we shall restrict ourselves to the ob-
servation that, though dispersion is enhanced for the AA
coil by chaotic mixing as evidenced by a positive
Lyapunov exponent, this does not in itself ensure im-
proved heat transfer performance for such a coil.

In order to understand the mechanism responsible
for the heat transfer enhancement in the alternating axis
coil, we begin by looking at the transverse flow field.
Figs. 3(a)-(d) show the cross-sectional velocities at
various axial distances along the unit cell as indicated. It
is noticed from the figure that within a short distance
after the plane of coil switch, the vortex pair is rotated
by an angle approximately equal to the switching angle.
Following this, the local details of the flow evolve over a
much longer length.

The transverse flow field for the CA coil shows the
existence of a separatrix streamline, connecting the two
hyperbolic stagnation points, between the counter-ro-
tating vortex pair along which flow is advected by the
secondary vortices. For Pe > 1, a thermal boundary
layer of thickness Pe~!/? also forms across the separatrix
where diffusive heat transfer in the normal direction is
balanced by tangential convective flux. Fig. 4 shows the
isotherms in the thermal developing region for the CA
coil at Pe = 1000. Within each vortex, there exists a hot
spot with uniform temperature due to convective mixing
accompanied by large normal gradients at the inner re-
gion of the boundary layer. By invoking the alternating
axis mechanism, the thermal boundary layer across the
separatrix is destroyed leading to convective exchange of
energy across this barrier. Consequently, a major
mechanism by which chaotic mixing of an AA coil en-
hances heat transfer is by eliminating the internal
boundary layer at the separatrix to homogenize the in-
terior temperature.

But the above mechanism is only effective at high Pr.
In our earlier study of a low Pr CA coil [14,21], it was
found that diffusion dominates in the entire tube and,
instead of an interior thermal boundary layer at the
separatrix, a hot spot is formed at the tube center at an
axial distance at which the Nusselt number curve ex-
hibits a minimum. The subsequent increase in the
transverse averaged Nusselt number in the thermally
developing region for low Pr fluids as shown in Fig. 5 is
due to the downstream eccentric displacement of this hot
spot under the combined action of the axial and sec-
ondary flow. This coupling between the flow and tem-
perature fields leads to the continued presence of a thin
thermal boundary layer over a portion of the tube cross-
section near the stagnation point region even in the fully
developed condition, resulting in an efficient heat
transfer process. Since there is no internal thermal
boundary layer in this case, and since the convective flux
is small compared to the diffusive flux, rotation of the
coil axis merely displaces the hot spot across the tube
cross-section without significantly altering the tempera-
ture profile. We see here that for the chaotic mixing to
result in a manifestly larger heat transfer, convective
heat transport has to be significantly larger than diffu-
sive heat transport. As seen from Fig. 6, for low Pr
fluids, the Nusselt number for the CA coil may actually
be higher than that of the AA coil. It may also be ob-
served that the Pr effect at a given switching angle is
independent of the flow Lyapunov exponent. This is so
since the Lyapunov exponent is completely determined
from a specification of the curvature ratio, J, and the
pressure gradient parameter, G, and is then unaffected
by the choice of the Prandtl number. In particular, in
Fig. 6, though the pathlines are chaotic for the AA coil
for each of the three cases shown, the Nusselt number
ratio relative to the CA coil is greater than one only for
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(@) =0

(b) £=0.05

© {=0.125

(d) {=05

Fig. 3. Cross-sectional velocity vector field along the unit cell for AA coil; G = 5500 (Re = 685), 0 = 0.1, 8 = 90°, z, = 7/20.

large Pe. Thus the chaotic mixing effect, while being
intimately related to heat transfer enhancement as it
specifies the optimal switching angle, does not provide
full details of the mechanism involved.

The development of the internal boundary layer at
large Pr also determines the optimal switching length of
the AA coil. In essence, the periodic switching eliminates
this interior thermal boundary layer. There are hence
two important mechanisms in the heat transfer en-
hancement. One is the minimization of the interval over
which an interior boundary layer exists and the other is
the maximization of mixing across this boundary layer
once it is broken. The second mechanism can be en-
hanced by chaotic mixing while the first is accomplished
by selecting the optimal switching length. We shall study
these observations with the following numerical studies.

5. Heat transfer and pressure drop results

The transverse averaged Nusselt number of an AA
coil, plotted in Fig. 7 for G = 5500 which corresponds to
Re = 685.3 for the CA coil, and Re = 684.8 for the AA
coil, shows a continuous variation along the unit cell.
Contrast this to the case of the constant axis coil, in
which the Nusselt number goes to a constant for these
parameters, and it becomes clear that the elliptic influ-
ence of the conditions occurring due to axis switching
permeates throughout the length of the unit cell. In this
particular figure, the non-dimensional axial length,
which represents the absicca (, has been normalized by
the length of the unit cell, y,/9, i.e., { = z/2z,. A point of
interest here is that even though the flow field repeats in
axial lengths of 7,/9, the peripheral averaged Nusselt
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0=0.1,P=1

Nusselt number

0 L L L L L L L
0 10 20 30 40 50 60 70 80

z

Fig. 5. Peripherally averaged Nusselt numbers at entrance to
CA coil; G =400 (Re = 81.3), 6 = 0.2.

number as shown in Fig. 7 repeats periodically in axial
lengths of 7,/20.

In order to frame the discussion in standard terms
and to facilitate comparison to straight tube data, the
pressure drop data is expressed in terms of the friction
factor. For any internal flow the friction factor, f, can be
written in terms of the pressure drop parameter, G, and
the Reynolds number, Re, as

G
S=1607 (14)

The friction factor is thus a mean value over the unit cell
of interest. For laminar flow in a straight tube, the
pressure drop is proportional to the flow rate, G = 4Re.
For curved tubes in general, the Re = Re(G, 9, 0) func-

25
:] CA; G=5500, 8=0.1 -
@AM G=6500,8=04 =T
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Fig. 6. Nusselt number dependence on Prandtl number for CA
and AA coils.

2501 atdy . AAAAAAaA
[ * AA"M-‘ AA “eans
A

D t & " &
2 22.5T,,4 an®
~

20.0F

1751

& AA
— CA
15.0 : . !
0.00 0.25 0.50 0.75 1.00
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Fig. 7. Peripherally averaged Nusselt number; G = 5500
(Re = 685), 6 = 0.1, Pr=10. For AA coil, 6 = 90°.

tion is not known, but can be easily determined nu-
merically from Eq. (9) once the steady state flow field is
established.

Figs. 8(a) and (b) contrast the friction factor ratio
and the Nusselt number respectively for the two coils.
Though the f'value for coiled tubes are much higher than
that for straight tubes due to the recirculating transverse
flow, the friction factor ratio is seen to be approximately
the same for the two coils with the difference being of the
order of 1%. As discussed earlier, the Nusselt number is
a function of the Prandtl number and is about 10% more
for the alternating axis coil at a Prandtl number of 10.
For this set of data, the coil axis was switched by 90°
after each half of a unit cell.
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Fig. 8. (a) Variation of friction factor ratio with Reynolds number, = 0.1. For AA coil, 6 = 90°. (b) Variation of Nusselt number

with Reynolds number, ¢ = 0.1. For AA coil, § = 90°.

Despite the considerable mixing achieved in case of
the AA coil as evidenced by the Poincare maps of Fig. 2,
the overall pressure drop for the AA coil is not much
different from that of the CA coil as seen from Fig. 8(a).
This is so because to leading order, the pressure drop is a
function of the mean axial flow velocity, which is larger
than the cross-sectional velocities by almost an order of
magnitude over the entire range of Reynolds numbers
examined here. Consequently, the change in cross-sec-
tional velocity field between the CA and AA coils only
marginally influences the mean flow field. The Nusselt
number, on the other hand, relates to wall heat transfer
and is affected to leading order by the transverse flow.
For large Pr, the AA mechanism is therefore a viable
means of obtaining significant heat transfer enhance-
ment with little extra expenditure in pressure drop.

Fig. 9 shows the friction factor and Nusselt number
ratios as a function of switching angle. The Reynolds
number varies between a minimum of 69.3 for = 135° to
amaximum of 74.1 at 6 = 0. The Prandtl number used for
the Nusselt number calculations is ten. Similar variation
of the Nusselt number and the friction factor is also ob-
served for G = 3250 (Re = 300). This case is omitted for
reasons of space. The maximum enhancement is attained
roughly at 6 = 120°, as is consistent with our Poincaré
map analysis. It should also be noted that not all switching
angles result in an increase in the Nusselt number. For
example, at 0 = 180°, the Nusselt number for the alter-
nating axis coil is actually lower than the constant axis coil
by about 20%. The pressure drop shows a variation of
+4% in the range of switching angle 6 examined here.

The minimum in the Nusselt number curve seen in Fig.
9 is related to the interaction of the developing flow field
with the cross-sectional temperature field. At a switching
angle of 0 = 180°, the hot spot at the tube center gets

16
° °
14+ . . M M o f14
« <
:u $12 O
<
<
<
>
p=4
—41.0
o (6= 0 O
o8l ®© f ratio (8 = 0.2) dos
° fratio (6 = 0.4)
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Fig. 9. Friction factor and Nusselt number ratios as a function
of switching angle, G = 400.

displaced eccentrically across the tube cross-section as one
progresses along the axial coordinate, but its transverse
motion is reversed before it reaches the wall. This leads to
reduced mixing near the boundary and inefficient heat
transfer. The periodicity of this modulation depends on
the switching length. In this particular example, the
switching length is chosen to be less than the thermal de-
velopment length. It is thus noted that the switching
length is an important parameter controlling the Nusselt
number. For Pr < 10, the Nusselt number is weakly sen-
sitive to the switching length, provided the switching
length is kept equal to or larger than 1/4th of a coil loop.

6. Nusselt number correlations

On the basis of the numerical data, the Nusselt
number is correlated against 6, Re and Pr in terms of
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power laws. The switching length z, = n/0, and the
switching angle 6 = 90° are kept fixed.
The Nusselt number for the AA coil is of the form

Nu = 0.78"8Re™ P35 for Pr<, (15)
Nu = 0.76**Re"* P for Pr> 1, (16)
while the CA coil has the dependence

Nu = 0.695" RSP for Pr<, (17)
Nu = 0.676"2Re" 5P for Pr> 1. (18)
The relative enhancement is thus of the form

Nu

UM 1014592095 for Pr<l, (19)
NucA

Nu X

AN 1.0458°° P for Pr> 1. (20)
Nuca

Fig. 10 shows the Nusselt number correlation data
plotted against the Prandtl number for various param-
eter values with Pr from 0.1 to 10.0, Re from 50 to 1000,
and Pe > 60. Fig. 10(a) is for the CA coil and Fig. 10(b)
is for the AA coil. An assumption implicit in the pre-
vious correlations is a boundary layer behavior in-built
in the square root scaling of Nu with the Reynolds
number. These correlations are valid for Pe > 60.

7. Conclusions

This study establishes quantitatively the viability of
using the concept of chaotic mixing as a useful tool in

designing an efficient coiled tube heat exchanger. Chaotic
mixing is achieved here by periodic rotation of the coil
axis which results in an increase in heat transfer in the
limit of large Pr. The details of the mechanism respon-
sible for this enhancement are identified. They are asso-
ciated with the breaking of an interior boundary layer
and the degree of convective mixing across this layer. The
AA coil geometry displays a heat transfer enhancement
of 7-20% in terms of the fully developed Nusselt number
with little change in the pressure drop characteristics as
compared to a small pitch helical coil idealized as the CA
coil over a Reynolds number range of 50 < Re < 1200.

The motivation for studying the periodically devel-
oped flow and heat transfer in coiled tubes lies in the
possible use of such modules in heat exchangers. Such
coiled tube heat exchangers offer the advantages of
compactness and increased thermal efficiency. The
drawback is geometric complexity which could push up
manufacturing and maintenance costs. While the en-
hancement increases uniformly with the Prandtl num-
ber, the coil axis rotation angle, 0, has an optimum value
of about 120° at which the enhancement is maximized.
For Pe = 60, the enhancement shows little sensitivity to
the Reynolds number and the switching length.
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